

More Precision

colorSENSOR // True Color Measuring Systems

Options

color**SENSO**R

28

29

In order to create a basis for worldwide color communication and standardized color measurement systems, the CIE (Commission internationale de l'éclairage, International Commission on Illumination) was founded in 1931 and is responsible for monitoring and inspection of internationally recognized color values. The observer was defined (see "Standard observer") in a study based on individual color impression. Furthermore, light sources such as fluorescent lamps, candles, the sun etc. were defined as illuminants. If a sample is measured using a color measurement device, the factors illuminant and observer are standardized, adjustable parameters with international validity. The color perception of the test persons was defined in the standard spectral sensitivity functions \bar{x} (long-), \bar{y} (medium-) and \bar{z} (short-wave).

Color assessment based on:

Hue:	Color differentiation, e.g., red, green, blue, yellow, etc.
Brightness:	Intensity of light perception, color appears darker or brighter
Colorfulness:	Intensity of the color compared with a gray color (not colored) with the same brightness
Saturation:	Describes the relation between colorfulness and brightness

People perceive colors differently. In order to achieve perceptual uniformity, the International Commission on Illumination (CIE) stipulates spectral weighting functions. These functions describe how people perceive colors. They are based on experimentally determined sensitivity curves of the long-wave L-cone (X), medium-wave M-cone (Y) and short-wave S-cone (Z).

This is how each perceivable color can, due to its characteristics, be assigned an exact location in a color space and be communicated worldwide.

Color spaces

The human eye has three color receptors (L = long, M = middle, S = short). This is why 3D color models are used in order to clearly identify colors and to compare these with other colors (see color distance). In the industry, particularly the L*a*b* color space has become established.

Standard color space CIE 1931 (xyY color space)

This color space is based on perceived color in human color vision.

(very large green and small blue/red range).

 \boldsymbol{x} and $\boldsymbol{y}=$ color vectors describing hue and saturation

Y = value (brightness) scaled from 0 to 100

W = white point (x=y=z=1/3)

Spectral lines = "pure" colors

Black body curve = color as temperature of an ideal, black radiator

Suitable for testing green and white LEDs.

color**SENSOR**

Standard color space CIELAB76

30

The L*a*b color space comprises all colors perceptible to the human eye. In this 3D color model, each hue is described with approximately the same volume of space. The L*a*b* color space has established itself in the industry and is used by device manufactures for color inspection.

Each color is described by the color location (L*; a*; b*).

- $L^* = lightness$ (black = 0; white = 100)
- $a^* = \text{green/red colors}$ (green = -100; red = +100)
- $b^* = blue/yellow colors (blue = -100; yellow = +100)$

I ldeal color space for color test, as each color range is the same size.

Color distance ΔE

The larger the difference between the colors within the color space, the more clearly the difference can be perceived with the human eye. This is defined as ΔE color distance.

Delta E; Δ E; dE = is a metric for the perceived color distance between colors (DIN 5033)

$$\Delta E = \sqrt{(L_{p}^{*} - L_{y}^{*})^{2} + (a_{p}^{*} - a_{y}^{*})^{2} + (b_{p}^{*} - b_{y}^{*})^{2}}$$

 ΔE of 11.61 corresponds to the difference between sample (p) and comparison (v)

 $\Delta E = \sqrt{(60^*_{p} - 55^*_{y})^2 + (-38,6^*_{p} - (-30)^*_{y})^2 + (-46^*_{p} - (-52)^*_{y})^2} = 11,62$

Interpretation:

=100

∧a*

ΛE*

 Δb^*

RGB Color space

It combines the colors red (R), green (G) and blue (B) into one. It is an additive color space, i.e. all three colors as one result in the color white. Black color is produced when R/G/B = 0/0/0.

The RGB color space has established itself in the display industry but is of no interest for industrial measurement technology since not every color can be displayed and measured.

Standard illuminant A 500 600 700 Standard illuminant D65 400 500 600 Standard illuminant D65 600 Standard illuminant Standard illuminant D65 600 Standard illuminant Standard

600

Standard illuminants and light sources

Standard illuminants are defined from 380 to 780 nm.

- Illuminant A = light bulb with 2865 k
- Illuminant D65 = medium daylight with approx. 6500 k
- Illuminant F11 = fluorescent lamp
- Cold white LED

Measurement geometries

With structured surfaces, it is recommended to perform the inspection from all four directions (north, east, south, west on one side) and to calculate the average on different positions or to illuminate the specimen from all directions (ring illumination (R45°c:0°) and to measure only one

position. With translucent samples, a defined background or folding the sample should provide sufficient layer thickness for the inspection. You can alternatively use some illumination as background in order to inspect in transmission (0°:180°) mode.

Sensors and Systems from Micro-Epsilon

Sensors and systems for displacement, distance and position

Optical micrometers and fiber optics, measuring and test amplifiers

Sensors and measurement devices for non-contact temperature measurement

Color recognition sensors, LED analyzers and inline color spectrometers

Measuring and inspection systems for metal strips, plastics and rubber

3D measurement technology for dimensional testing and surface inspection

Modifications reserved / Y9766371-F072024GKE

MICRO-EPSILON USA 8120 Brownleigh Dr. · Raleigh, NC 27617 / USA Phone +1/919/787-9707 · Fax +1/919/787-9706 me-usa@micro-epsilon.com · www.micro-epsilon.com